
The Heap

In most systems the Heap is a large, static chunk of
memory that can be allocated dynamically.

The heap does not coordinate with function calls
the way the stack does. Functions can allocate
memory from the heap that persists after the
function returns.

We can allocate a 1MB heap with

 .comm Heap, 1000000

There are 3 issues with heap management:

• How to allocate chunks of memory from the
heap.

• How to manage fragmentation of the heap.
• How to deallocate memory from the heap

that was previously assigned and no longer
needed.

Note that all of these must be handled at runtime.

I. Allocation

How would you manage allocation? The heap is a
finite resource. While you can't prevent a program
from requesting more memory than is available,
you want to manage the resources so that you will
be able to satisfy as many requests as possible.

Good allocation strategies

A. are quick
B. don't overly fragment the heap, which would

make subsequent allocations difficult
C. try to allocate related data in nearby

locations, to minimize page faults

All strategies maintain a HeapTable that lists all
allocated chunks of the heap. Each chunk has a
header that says

a) the size of the current chunk
b) the amount of the chunk currently in use
c) a pointer to to the start of the object

contained in the heap

Almost all strategies allocate chunks of data that
are actually larger than requested by the program
to allow for dynamic allocation. For example, if a
program requests 13 bytes the system might
actually allocate a 512-byte or 1K block. A second
request for a small amount of the heap might
actually come from this block that is already
allocated. This helps to reduce the fragmentation
of the heap.

Here are 3 popular allocation stragegies:
• Best Fit: The heap is searched for a chunk of

memory that most closely matches the
requested size.

• First Fit: The heap is searched for the first chunk
of memory at least as large as the requested
size.

• Next Fit: Looks through the heap for the first
chunk of memory that is large enough, starting
at the location of the last alloation.

How do these do with our 3 criteria?

II. Defragmentation

Fragmentation is a problem because a highly
fragmented heap may not allow a large allocation
even if the total amount of memory is sufficient.

Naturally, everyone tries to allocate in such a way
as to minimize fragmentation, but it will inevitably
occur.

Once the heap is fragmented, the only possible way
to defragment it involves moving data that is in
blocks that have already been allocated.

Consider a C program that has a line of code

 p = (int *)malloc(23*sizeof(int));

At some point in the future the defragmenter will
want to change the address p refers to. How can it
do that?

It is not possible to find all of the memory
locations that hold the value of p. Instead, we
make the value of p be an address in the
HeapTable. That address will stay fixed throughout
the life of p. However, we can use the HeapTable
as an additional level of indirection -- the table
entry will be an actual address in the heap where
the data p points to will be stored.

This allows us to move the block that the HeapTable
points to for p.

When a trigger is reached an algorithm runs
through all of the allocated blocks, moving them
together to leave large free blocks of the heap.
Each time a block is move its address in the
HeapTable is updated.

Here are some possible triggers for defragmenting
the heap:

• The largest free block is less than some value
• The average free block is less than some

value
• The allocation algorithm needs to check X

locations to find a suitable location.

